
When	do	I	need	an	invariant?

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	7.4

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Learning	Objectives

• At	the	end	of	this	lesson,	the	student	should	
be	able	to
– decide	whether	a	purpose	statement	needs	an	
invariant	or	not.

2

When	do	I	need	an	invariant?

• It	all	depends	on	the	purpose	statement.
• If	your	code	fulfills	the	purpose	statement	for	
any	arguments	of	the	types	listed	in	the	
contract,	you	don't	need	an	invariant.

• If	the	function	fulfills	its	purpose	statement	
only	for	certain	values	or	combinations	of	
values	of	the	arguments,	then	you	must	
document	that	restriction	with	a	WHERE-
clause.

3

What	kind	of	thing	belong	in	an	
invariant?

• If	the	function	needs	additional	information	
that	is	not	in	the	arguments,	then	you	need	an	
invariant	to	document	the	needed	information

• What	kind	of	information	might	you	want?
– context	information	(e.g.	we	are	position	n in	the	
list)

– other	knowledge	that	isn't	expressed	in	the	
contract	(e.g.	we've	figured	out	the	ball	isn't	going	
to	bounce).

4

Whose	responsibility	is	it?

• The	invariant,	along	with	the	contract,	sets	
down	the	assumptions	that	each	function	
makes	about	the	arguments	that	it	processes

• It	is	up	to	each	caller	of	the	function	to	make	
sure	that	the	invariant	is	true	at	every	call.

• The	function	gets	to	assume	that	the	invariant	
is	true.

5

;; ball-normal-motion : Ball -> Ball
;; GIVEN: a Ball
;; WHERE: the Ball is not going to
;; collide with a wall on this tick
;; RETURNS: the state of the ball after a
;; tick.
(define (ball-normal-motion b)
(make-ball

(+ (ball-x-pos b) BALLSPEED)))

Example:	

6

Doesn't	work	for	every	Ball!..		
Needs	more	information	

Invariant	provides	the	
necessary	information	

Example
;; number-list-from : ListOfX Number -> NumberedListOfX
;; RETURNS: a list with same elements as lst, but numbered
;; starting at n.
;; EXAMPLE: (number-list-from (list 88 77) 2)
;; = (list (list 2 88) (list 3 77))
;; STRATEGY: Use template for ListOfX on lst
(define (number-list-from lst n)
(cond
[(empty? lst) empty]
[else
(cons
(list n (first lst))
(number-list-from (rest lst) (+ n 1)))]))

7

Works	for	any	lst and	n,	so	
no	invariant	necessary.	

Example:	Same	Code,	different	
purpose	statement

;; number-list-from :
;; ListOfX Number -> NumberedListOfX
;; GIVEN: a sublist slst of some list lst0
;; WHERE: slst is the n-th sublist of lst0
;; RETURNS: a copy of slst numbered according to its
;; position in lst0.
;; STRATEGY: Use template for ListOfX on slst
(define (number-sublist slst n)
(cond
[(empty? slst) empty]
[else
(cons
(list n (first slst))
(number-sublist (rest slst) (+ n 1)))]))

8

Function	can't	fulfill	its	
purpose	unless	it	knows	

where	slst is	in	lst0

Invariant	supplies	the	extra	
information

Wait,	weren't	those	functions	very	
similar?

• Yes.		In	fact	they	were	identical	(except	for	
their	names).

• The	moral	of	the	story	is	that	it	is	the	purpose	
statement	that	determines	whether	you	need	
an	invariant.

9

Once	more:	When	do	I	need	an	
invariant?

• If	your	code	fulfills	the	purpose	statement	for	
any	arguments	of	the	types	listed	in	the	
contract,	you	don't	need	an	invariant.

• If	the	function	only	works	for	certain	values	or	
combinations	of	values	of	the	arguments,	then	
you	must	document	the	assumptions	that	it	
needs	with	a	WHERE-clause	(i.e.	an	invariant).

10

What	needs	to	be	in	my	purpose	
statement?

• The	purpose	statement	must	account	for	all	the	parameters.
– if	it	doesn't	then	either	you	are	passing	more	parameters	than	you	

need,	or	there's	something	going	on	that	you	haven't	described.

• The	RETURNS	clause	must	describe	the	value	returned	by	the	
function	for	all	possible	values	of	the	parameters.

• If	the	RETURNS	clause	describes	the	value	returned	by	the	
function	only	for	some	values	of	the	arguments	or	some	
combination	of	arguments,	then	that	restriction	must	be	
stated	in	a	WHERE	clause.

• It	becomes	the	responsibility	of	the	caller	to	guarantee	that	
the	restriction	is	satisfied.

11

Another	example
;; add-remaining-length : LoN -> LoN
;; RETURNS: a list like the original, but with each
;; element increased by the length of the sublist
;; starting at that element.
;; (100 300 500) => (103 302 501)
;; Strategy: SD on lst
(define (add-remaining-length lst)
(cond
[(empty? lst) empty]
[else (cons

(+ (first lst) (length lst))
(add-remaining-length
(rest lst)))]))

12

Yuck!

Let's	help	the	function	along	by	giving	
it	the	length	of	the	list	as	an	argument
;; add-remaining-length-1 : LoN Number-> LoN
;; GIVEN: a Lon lst and a number n
;; WHERE: n = (length lst)
;; RETURNS: a list like the original, but with each
;; element increased by the length of the sublist
;; starting at that element.
;; (100 300 500) 3 => (103 302 501)
;; Strategy: SD on lst
(define (add-remaining-length-1 lst n)
(cond [(empty? lst) empty]

[else (cons
(+ (first lst) n)
(add-remaining-length-1 (rest lst)

(- n 1)))])) 13

Doesn't	give	the	
right	answer	unless	
invariant	is	satisfied	

Summary:	When	do	I	need	an	
invariant?	

• It	all	depends	on	your	purpose	statement!
• If	the	function	needs	additional	information	
that	is	not	in	the	arguments,	then	you	need	an	
invariant	to	document	the	needed	information

• It	is	up	to	each	caller	of	the	function	to	make	
sure	that	the	invariant	is	true	at	every	call.

14

Summary

• The	student	should	now	be	able	to
– decide	whether	a	purpose	statement	needs	an	
invariant	or	not.

15

Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson

16

